Dynamic uncapacitated lot sizing with random demand under a fillrate constraint

Horst Tempelmeier and Sascha Herpers

Seminar für SCM und Produktion
Universität zu Köln

EURO Conference 2009

Bonn, July 2009
Agenda

1. Introduction
 - The Problem
 - Solution Approaches

2. Optimization Model
 - Formulation

3. Solution approaches
 - Exact solution
 - Heuristic solution

4. Numerical Results
 - Experiment 1
 - Experiment 2

5. Conclusion
1 Introduction
 • The Problem
 • Solution Approaches

2 Optimization Model
 • Formulation

3 Solution approaches
 • Exact solution
 • Heuristic solution

4 Numerical Results
 • Experiment 1
 • Experiment 2

5 Conclusion
Planning situation
Dynamic and Random Demand

- Demand (forecasted averages and variations)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_t</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>σ_t</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- Holding costs
- Setup costs
- Service level
Alternatives

- **Common sense approach (MRP, APS)**
 Compute safety stocks and add to forecasted demand

-

 \((s_t, q_t)\)-policy, \((r_t, S_t)\)-policy

 Use a **stationary** inventory policy with dynamic adjustment of parameters

- **"Static-dynamic uncertainty" strategy**
 Fix replenishment **periods** in advance, adjust production quantity

- **"Static uncertainty" strategy**
 Fix replenishment **periods** and **quantities** in advance
1 Introduction
 • The Problem
 • Solution Approaches

2 Optimization Model
 • Formulation

3 Solution approaches
 • Exact solution
 • Heuristic solution

4 Numerical Results
 • Experiment 1
 • Experiment 2

5 Conclusion
Model Formulation I

Model $\text{SSIULSP}^q_{\beta_c}$:

Minimize $Z = \sum_{t=1}^{T} \left(s \cdot \gamma_t + h \cdot E \{ [l_t]^+ \} \right)$ \hspace{1cm} (1)

s.t.

$l_{t-1} + q_t - D_t = l_t \quad t = 1, 2, \ldots, T \hspace{1cm} (2)$

$q_t - M \cdot \gamma_t \leq 0 \quad t = 1, 2, \ldots, T \hspace{1cm} (3)$

$l_{t}^{f, \text{prod}} = -[l_{t-1} + q_t]^- \quad t = 1, 2, \ldots, T \hspace{1cm} (4)$

$l_{t}^{f, \text{end}} = -[l_t^-] \quad t = 1, 2, \ldots, T \hspace{1cm} (5)$

$F_t = l_{t}^{f, \text{end}} - l_{t}^{f, \text{prod}} \quad t = 1, 2, \ldots, T \hspace{1cm} (6)$
Model Formulation II

\[l_t = (l_{t-1} + 1) \cdot (1 - \gamma_t) \quad t = 1, 2, \ldots, T \]

\[l_0 = -1 \]

\[\omega_t = \gamma_{t+1} \quad t = 1, 2, \ldots, T - 1 \]

\[\omega_T = 1 \]

\[1 - \frac{\mathbb{E}\left\{ \sum_{j=t-l_t}^t F_j \right\}}{\mathbb{E}\left\{ \sum_{j=t-l_t}^t D_j \right\}} \geq \beta^*_c \quad t \in \{ t \mid \omega_t = 1 \} \]
Symbols used I

- β^*_c: target fillrate
- D_t: demand in period t (random variable)
- F_t: backorder in period t (random variable)
- γ_t: binary setup indicator in period t
- h: inventory holding cost
- I_t: net inventory at the end of period t (random variable)
- $I_{t,\text{end}}^f$: backlog at the end of period t (random variable)
- $I_{t,\text{prod}}^f$: backlog immediately after production in period t (random variable)
- l_t: number of periods since the last setup prior to period t
- M: large number
Symbols used II

\(\omega_t \)
indicator variable: \(\omega_t = 1 \), if production takes place in period \(t + 1 \); \(\omega_t = 0 \), otherwise

\(q_t \)
production quantity in period \(t \)

\(s \)
setup cost

\(T \)
length of planning horizon

\([x]^+ \)
\(= \max\{0, x\} \)

\([x]^− \)
\(= \min\{0, x\} \)
Expected Inventory

\[
E\{I_t^p\} = \int_0^{Q(t)} (Q(t) - y) \cdot f_{Y(t)}(y) \cdot dy
\]

\[
= Q(t) - E\{Y(t)\} + G_{Y(t)}^1(Q(t))
\]

\[t = 1, 2, \ldots \quad (14)\]

\(Q(t)\) – cumulated production quantity from period 0 to \(t\)
\(Y(t)\) – cumulated demand from period 0 to \(t\)
1 Introduction
 • The Problem
 • Solution Approaches

2 Optimization Model
 • Formulation

3 Solution approaches
 • Exact solution
 • Heuristic solution

4 Numerical Results
 • Experiment 1
 • Experiment 2

5 Conclusion
Shortest-Path Network

\[E\{C_{\tau t}\} = s + h \cdot \sum_{\ell=\tau}^{t-1} E \left\{ \left[l_{\tau-1}(P_{\tau}) + q_{\tau t}^* - \sum_{i=\tau}^{\ell} D_i \right]^+ \right\} \] (15)
Shortest-Path Network

<table>
<thead>
<tr>
<th>Setup in period</th>
<th>On hand inventory $E{I_5^p}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 0 0 0</td>
<td>79.61</td>
</tr>
<tr>
<td>1 1 0 0 0</td>
<td>81.14</td>
</tr>
<tr>
<td>1 1 1 0 0</td>
<td>87.01</td>
</tr>
<tr>
<td>1 1 1 1 0</td>
<td>103.89</td>
</tr>
<tr>
<td>1 1 1 1 1</td>
<td>118.95</td>
</tr>
<tr>
<td>1 0 1 0 0</td>
<td>86.95</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Table: Expected on-hand inventory at the end of period 5 as a function of the setup pattern
Solution Procedure

1. $\mathcal{M} := \mathcal{U} := \{2, 3, \ldots, T\}$
2. $\mathcal{E} := \{(\tau, t) | \tau = 1, 2, \ldots, T; t = \tau + 1, \tau + 2, \ldots, T - 1\}$
3. for all $((0, t) \in \mathcal{E}$ with $t \in \mathcal{U})$ do
 4. Predecessor$(t) := 1$; $C(t) := \mathcal{E} \{C_{1t}\}$
 5. end for
6. while ($\mathcal{M} \neq \emptyset$) do
5. Select $\tau \in \mathcal{M}$ with minimum $C(\tau)$
8. $\mathcal{M} := \mathcal{M} \setminus \tau$; $\mathcal{U} := \mathcal{U} \setminus \tau$
9. if ($\tau = T$) then
 10. end
11. else
 12. for all $((\tau, t) \in \mathcal{E}$ with $t \in \mathcal{U})$ do
 13. $\mathcal{M} := \mathcal{M} \cup t$
 14. if ($C(\tau) + \mathcal{E} \{C_{\tau t}\} < C(t)$) then
 15. Predecessor$(t) := \tau$
 16. $C(t) := C(\tau) + \mathcal{E} \{C_{\tau t}\}$
 17. end if
 18. end for
 19. end if
20. end while
Dynamic Lot Sizing Heuristic

1: $\tau := 1$
2: while ($\tau < T$) do
3: \hspace{1em} $t := \tau$
4: \hspace{1em} while ($t < T$) do
5: \hspace{2em} if ($C_{\tau t} \leq C_{\tau,t+1}$) then
6: \hspace{3em} $t := t + 1$
7: \hspace{2em} else
8: \hspace{3em} Make current lotsize for period τ permanent.
9: \hspace{2em} $\tau := t + 1$
10: \hspace{1em} end if
11: \hspace{1em} end while
12: end while
Silver-Meal Rule

\[
E\{C_{\tau t}\} = \frac{s + h \cdot \sum_{\ell=\tau}^{t} E \left\{ l_{\tau-1}(P_{\tau-1}) + q_{\tau}^* - \sum_{i=\tau}^{\ell} D_i \right\}^+}{t - \tau + 1}
\] (16)
Least-Unit-Cost rule

\[E\{C_{\tau t}\} = E \left\{ \frac{s + h \cdot \sum_{\ell=\tau}^{t} \left[I_{\tau-1}(P_{\tau-1}) + q_{\tau t}^* - \sum_{i=\tau}^{\ell} D_i \right] +}{\sum_{i=\tau}^{t} D_i} \right\} \] (17)
Least-Total-Cost rule

\[E\{C_{tt}\} = E\left\{ s + h \cdot \sum_{\ell=\tau}^{t} \left[l_{\tau-1}(P_{\tau-1}) + q^*_{\tau t} - \sum_{i=\tau}^{\ell} D_i \right]^+ \right\} \quad (18) \]
1 Introduction
 • The Problem
 • Solution Approaches

2 Optimization Model
 • Formulation

3 Solution approaches
 • Exact solution
 • Heuristics solution

4 Numerical Results
 • Experiment 1
 • Experiment 2

5 Conclusion
Expected Demands

<table>
<thead>
<tr>
<th>Series #</th>
<th>$E{D_t}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>92 92 92 92 92 92 92 92 92 92 92 93</td>
</tr>
<tr>
<td>2</td>
<td>80 100 125 100 50 50 100 125 125 100 50 100</td>
</tr>
<tr>
<td>3</td>
<td>50 80 180 80 0 0 180 150 10 100 180 95</td>
</tr>
<tr>
<td>4</td>
<td>10 10 15 20 70 180 250 270 230 40 0 10</td>
</tr>
</tbody>
</table>
Parameters

<table>
<thead>
<tr>
<th>Series #</th>
<th>T</th>
<th>s</th>
<th>TBO</th>
<th>CV_D</th>
<th>β_c^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>500</td>
<td>1–12</td>
<td>{0.1, 0.2, 0.3, 0.4}</td>
<td>{0.5, 0.525, 0.05, ..., 0.975}</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>500</td>
<td>1–12</td>
<td>{0.1, 0.2, 0.3, 0.4}</td>
<td>{0.5, 0.525, 0.05, ..., 0.975}</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>500</td>
<td>1–12</td>
<td>{0.1, 0.2, 0.3, 0.4}</td>
<td>{0.5, 0.525, 0.05, ..., 0.975}</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>500</td>
<td>1–12</td>
<td>{0.1, 0.2, 0.3, 0.4}</td>
<td>{0.5, 0.525, 0.05, ..., 0.975}</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Series #</th>
<th>Heuristic</th>
<th>Average cost increase (%)</th>
<th>Maximum cost increase (%)</th>
<th>% Optimal</th>
<th>% Worst</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LUC</td>
<td>4.9</td>
<td>30.4</td>
<td>56.6</td>
<td>3.76</td>
</tr>
<tr>
<td></td>
<td>SM</td>
<td>5.0</td>
<td>30.4</td>
<td>56.0</td>
<td>3.97</td>
</tr>
<tr>
<td></td>
<td>LTC</td>
<td>5.3</td>
<td>29.1</td>
<td>48.6</td>
<td>7.00</td>
</tr>
<tr>
<td></td>
<td>PPA</td>
<td>5.8</td>
<td>43.5</td>
<td>57.8</td>
<td>19.23</td>
</tr>
<tr>
<td></td>
<td>AC</td>
<td>6.1</td>
<td>30.1</td>
<td>48.6</td>
<td>7.52</td>
</tr>
<tr>
<td></td>
<td>Groff</td>
<td>24.5</td>
<td>52.7</td>
<td>3.9</td>
<td>75.24</td>
</tr>
<tr>
<td>2</td>
<td>SM</td>
<td>5.9</td>
<td>32.7</td>
<td>42.8</td>
<td>4.79</td>
</tr>
<tr>
<td></td>
<td>LTC</td>
<td>7.2</td>
<td>28.7</td>
<td>41.5</td>
<td>5.31</td>
</tr>
<tr>
<td></td>
<td>LUC</td>
<td>7.5</td>
<td>31.3</td>
<td>39.9</td>
<td>5.83</td>
</tr>
<tr>
<td></td>
<td>PPA</td>
<td>7.9</td>
<td>49.9</td>
<td>51.4</td>
<td>17.50</td>
</tr>
<tr>
<td></td>
<td>AC</td>
<td>7.9</td>
<td>32.9</td>
<td>38.3</td>
<td>5.31</td>
</tr>
<tr>
<td></td>
<td>Groff</td>
<td>24.8</td>
<td>60.2</td>
<td>0.4</td>
<td>69.90</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Series #</th>
<th>Heuristic</th>
<th>Average cost increase (%)</th>
<th>Maximum cost increase (%)</th>
<th>% Optimal</th>
<th>% Worst</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>AC</td>
<td>9.7</td>
<td>37.0</td>
<td>35.4</td>
<td>3.02</td>
</tr>
<tr>
<td></td>
<td>PPA</td>
<td>10.2</td>
<td>55.8</td>
<td>46.0</td>
<td>3.96</td>
</tr>
<tr>
<td></td>
<td>SM</td>
<td>10.7</td>
<td>36.6</td>
<td>29.5</td>
<td>1.04</td>
</tr>
<tr>
<td></td>
<td>LTC</td>
<td>11.5</td>
<td>41.1</td>
<td>33.2</td>
<td>5.83</td>
</tr>
<tr>
<td></td>
<td>Groff</td>
<td>23.2</td>
<td>58.9</td>
<td>10.3</td>
<td>33.13</td>
</tr>
<tr>
<td></td>
<td>LUC</td>
<td>29.0</td>
<td>67.9</td>
<td>1.8</td>
<td>54.69</td>
</tr>
<tr>
<td>4</td>
<td>SM</td>
<td>6.0</td>
<td>30.9</td>
<td>49.9</td>
<td>1.88</td>
</tr>
<tr>
<td></td>
<td>AC</td>
<td>13.2</td>
<td>50.3</td>
<td>27.8</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>PPA</td>
<td>15.3</td>
<td>59.0</td>
<td>34.2</td>
<td>14.58</td>
</tr>
<tr>
<td></td>
<td>LTC</td>
<td>15.8</td>
<td>52.3</td>
<td>22.5</td>
<td>2.19</td>
</tr>
<tr>
<td></td>
<td>Groff</td>
<td>17.1</td>
<td>47.6</td>
<td>14.3</td>
<td>7.81</td>
</tr>
<tr>
<td></td>
<td>LUC</td>
<td>39.1</td>
<td>61.2</td>
<td>3.4</td>
<td>74.48</td>
</tr>
</tbody>
</table>
Results for Demand Series 1
Parameters

\[E\{D_t\} \sim \text{Uniform}(0, 100) \]

<table>
<thead>
<tr>
<th>Series #</th>
<th>T</th>
<th>s</th>
<th>TBO</th>
<th>(CV_D)</th>
<th>(\beta^*_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td>500</td>
<td>1–5</td>
<td>{0.1, \ldots, 0.4}</td>
<td>{0.5, 0.525, 0.05, \ldots, 0.975}</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>500</td>
<td>1–5</td>
<td>{0.1, \ldots, 0.4}</td>
<td>{0.5, 0.525, 0.05, \ldots, 0.975}</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>500</td>
<td>1–15</td>
<td>{0.1, \ldots, 0.4}</td>
<td>{0.5, 0.525, 0.05, \ldots, 0.975}</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>500</td>
<td>1–15</td>
<td>{0.1, \ldots, 0.4}</td>
<td>{0.5, 0.525, 0.05, \ldots, 0.975}</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Series #</th>
<th>Heuristic</th>
<th>Average cost increase (%)</th>
<th>Maximum cost increase (%)</th>
<th>% Optimal</th>
<th>% Worst</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>SM</td>
<td>4.7</td>
<td>35.4</td>
<td>65.4</td>
<td>14.47</td>
</tr>
<tr>
<td></td>
<td>AC</td>
<td>5.6</td>
<td>39.7</td>
<td>61.2</td>
<td>13.07</td>
</tr>
<tr>
<td></td>
<td>LTC</td>
<td>5.9</td>
<td>63.4</td>
<td>62.6</td>
<td>11.16</td>
</tr>
<tr>
<td></td>
<td>LUC</td>
<td>10.5</td>
<td>64.4</td>
<td>50.6</td>
<td>25.25</td>
</tr>
<tr>
<td></td>
<td>Groff</td>
<td>13.8</td>
<td>60.5</td>
<td>34.7</td>
<td>36.77</td>
</tr>
<tr>
<td></td>
<td>PPA</td>
<td>15.1</td>
<td>56.7</td>
<td>38.6</td>
<td>42.72</td>
</tr>
<tr>
<td>6</td>
<td>SM</td>
<td>4.2</td>
<td>32.7</td>
<td>43.7</td>
<td>3.75</td>
</tr>
<tr>
<td></td>
<td>AC</td>
<td>10.2</td>
<td>41.2</td>
<td>21.6</td>
<td>10.05</td>
</tr>
<tr>
<td></td>
<td>LTC</td>
<td>11.5</td>
<td>44.7</td>
<td>16.5</td>
<td>13.35</td>
</tr>
<tr>
<td></td>
<td>Groff</td>
<td>13.8</td>
<td>70.5</td>
<td>13.9</td>
<td>27.95</td>
</tr>
<tr>
<td></td>
<td>LUC</td>
<td>15.4</td>
<td>55.3</td>
<td>12.6</td>
<td>21.25</td>
</tr>
<tr>
<td></td>
<td>PPA</td>
<td>19.9</td>
<td>60.4</td>
<td>12.2</td>
<td>43.78</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Series #</th>
<th>Heuristic</th>
<th>Average cost increase (%)</th>
<th>Maximum cost increase (%)</th>
<th>% Optimal</th>
<th>% Worst</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>LTC</td>
<td>8.5</td>
<td>42.8</td>
<td>40.4</td>
<td>3.14</td>
</tr>
<tr>
<td></td>
<td>AC</td>
<td>8.6</td>
<td>44.8</td>
<td>39.5</td>
<td>2.26</td>
</tr>
<tr>
<td></td>
<td>PPA</td>
<td>9.1</td>
<td>64.9</td>
<td>53.1</td>
<td>15.04</td>
</tr>
<tr>
<td></td>
<td>LUC</td>
<td>11.0</td>
<td>53.9</td>
<td>35.3</td>
<td>8.18</td>
</tr>
<tr>
<td></td>
<td>SM</td>
<td>12.1</td>
<td>40.3</td>
<td>25.6</td>
<td>5.96</td>
</tr>
<tr>
<td></td>
<td>Groff</td>
<td>30.3</td>
<td>64.4</td>
<td>2.3</td>
<td>68.47</td>
</tr>
<tr>
<td>8</td>
<td>SM</td>
<td>8.8</td>
<td>38.8</td>
<td>21.1</td>
<td>1.54</td>
</tr>
<tr>
<td></td>
<td>AC</td>
<td>10.7</td>
<td>46.5</td>
<td>17.9</td>
<td>1.48</td>
</tr>
<tr>
<td></td>
<td>LTC</td>
<td>11.6</td>
<td>46.2</td>
<td>17.0</td>
<td>3.64</td>
</tr>
<tr>
<td></td>
<td>PPA</td>
<td>12.5</td>
<td>66.2</td>
<td>32.5</td>
<td>16.42</td>
</tr>
<tr>
<td></td>
<td>LUC</td>
<td>13.9</td>
<td>49.4</td>
<td>14.7</td>
<td>9.33</td>
</tr>
<tr>
<td></td>
<td>Groff</td>
<td>29.9</td>
<td>64.6</td>
<td>1.0</td>
<td>69.41</td>
</tr>
</tbody>
</table>
1 Introduction
 • The Problem
 • Solution Approaches

2 Optimization Model
 • Formulation

3 Solution approaches
 • Exact solution
 • Heuristic solution

4 Numerical Results
 • Experiment 1
 • Experiment 2

5 Conclusion
Conclusion

- Exact solution for the stochastic Wagner-Whitin problem
- Adjusted cost criteria used in standard dynamic lot sizing heuristics
- Silver-Meal rule superior to Groff rule
- Directly applicable in ERP/AP systems
- Static uncertainty strategy: no nervousness, no bullwhip effect
- Target service level (instead of backorder costs)
- Possible extension: Capacities (done)